Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 642
Filtrar
1.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769101

RESUMO

The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) that catalyzes the conversion of intracellular ATP to cAMP and through its signaling annihilates the bactericidal activities of host sentinel phagocytes. In parallel, CyaA permeabilizes host cells by the formation of cation-selective membrane pores that account for the hemolytic activity of CyaA. The pore-forming activity contributes to the overall cytotoxic effect of CyaA in vitro, and it has previously been proposed to synergize with the cAMP-elevating activity in conferring full virulence on B. pertussis in the mouse model of pneumonic infection. CyaA primarily targets myeloid phagocytes through binding of their complement receptor 3 (CR3, integrin αMß2, or CD11b/CD18). However, with a reduced efficacy, the toxin can promiscuously penetrate and permeabilize the cell membrane of a variety of non-myeloid cells that lack CR3 on the cell surface, including airway epithelial cells or erythrocytes, and detectably intoxicates them by cAMP. Here, we used CyaA variants with strongly and selectively enhanced or reduced pore-forming activity that, at the same time, exhibited a full capacity to elevate cAMP concentrations in both CR3-expressing and CR3-non-expressing target cells. Using B. pertussis mutants secreting such CyaA variants, we show that a selective enhancement of the cell-permeabilizing activity of CyaA does not increase the overall virulence and lethality of pneumonic B. pertussis infection of mice any further. In turn, a reduction of the cell-permeabilizing activity of CyaA did not reduce B. pertussis virulence any importantly. These results suggest that the phagocyte-paralyzing cAMP-elevating capacity of CyaA prevails over the cell-permeabilizing activity of CyaA that appears to play an auxiliary role in the biological activity of the CyaA toxin in the course of B. pertussis infections in vivo.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/patogenicidade , Coqueluche/metabolismo , Animais , Bordetella pertussis/fisiologia , Permeabilidade da Membrana Celular , AMP Cíclico/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fagócitos/metabolismo , Fagócitos/microbiologia , Ovinos , Virulência , Coqueluche/microbiologia , Coqueluche/patologia
2.
mBio ; 12(5): e0190221, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34700381

RESUMO

The ability of bacterial pathogens to acquire essential micronutrients is critical for their survival in the host environment. Manganese plays a complex role in the virulence of a variety of pathogens due to its function as an antioxidant and enzymatic cofactor. Therefore, host cells deprive pathogens of manganese to prevent or attenuate infection. Here, we show that evolution of the human-restricted pathogen Bordetella pertussis has selected for an inhibitory duplication within a manganese exporter of the calcium:cation antiporter superfamily. Intriguingly, upon exposure to toxic levels of manganese, the nonfunctional exporter becomes operative in resister cells due to a unique reverse adaptation mechanism. However, compared with wild-type (wt) cells, the resisters carrying a functional copy of the exporter displayed strongly reduced intracellular levels of manganese and impaired growth under oxidative stress. Apparently, inactivation of the manganese exporter and the resulting accumulation of manganese in the cytosol benefited the pathogen by improving its survival under stress conditions. The inhibitory duplication within the exporter gene is highly conserved among B. pertussis strains, absent from all other Bordetella species and from a vast majority of organisms across all kingdoms of life. Therefore, we conclude that inactivation of the exporter gene represents an exceptional example of a flexible genome decay strategy employed by a human pathogen to adapt to its exclusive host. IMPORTANCE Bordetella pertussis, a respiratory pathogen restricted to humans, continuously adapts its genome to its exclusive host. We show that speciation of this reemerging pathogen was accompanied by loss of function of the manganese exporter. Intriguingly, the functionality of the exporter can be restored in the presence of toxic levels of manganese by a unique genetic modification. However, compared with the wt strain, the strain carrying the functional exporter failed to resist the oxidative stress in vitro. Thus, our data demonstrate that inactivation of the exporter resulting in manganese accumulation assists B. pertussis in adaptation to oxidative stress. We conclude that this sophisticated process of reverse adaptation enables B. pertussis to adjust to rapidly changing environments by facilitating its resistance to both manganese toxicity and manganese scarcity.


Assuntos
Bordetella pertussis/efeitos dos fármacos , Bordetella pertussis/patogenicidade , Manganês/toxicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella pertussis/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Estresse Oxidativo , Virulência/efeitos dos fármacos , Fatores de Virulência/genética , Coqueluche/prevenção & controle
3.
Microbiol Spectr ; 9(2): e0004421, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34550019

RESUMO

Noncoding small RNAs (sRNAs) are crucial for the posttranscriptional regulation of gene expression in all organisms and are known to be involved in the regulation of bacterial virulence. In the human pathogen Bordetella pertussis, which causes whooping cough, virulence is controlled primarily by the master two-component system BvgA (response regulator)/BvgS (sensor kinase). In this system, BvgA is phosphorylated (Bvg+ mode) or nonphosphorylated (Bvg- mode), with global transcriptional differences between the two. B. pertussis also carries the bacterial sRNA chaperone Hfq, which has previously been shown to be required for virulence. Here, we conducted transcriptomic analyses to identify possible B. pertussis sRNAs and to determine their BvgAS dependence using transcriptome sequencing (RNA-seq) and the prokaryotic sRNA prediction program ANNOgesic. We identified 143 possible candidates (25 Bvg+ mode specific and 53 Bvg- mode specific), of which 90 were previously unreported. Northern blot analyses confirmed all of the 10 ANNOgesic candidates that we tested. Homology searches demonstrated that 9 of the confirmed sRNAs are highly conserved among B. pertussis, Bordetella parapertussis, and Bordetella bronchiseptica, with one that also has homologues in other species of the Alcaligenaceae family. Using coimmunoprecipitation with a B. pertussis FLAG-tagged Hfq, we demonstrated that 3 of the sRNAs interact directly with Hfq, which is the first identification of sRNA binding to B. pertussis Hfq. Our study demonstrates that ANNOgesic is a highly useful tool for the identification of sRNAs in this system and that its combination with molecular techniques is a successful way to identify various BvgAS-dependent and Hfq-binding sRNAs. IMPORTANCE Noncoding small RNAs (sRNAs) are crucial for posttranscriptional regulation of gene expression in all organisms and are known to be involved in the regulation of bacterial virulence. We have investigated the presence of sRNAs in the obligate human pathogen B. pertussis, using transcriptome sequencing (RNA-seq) and the recently developed prokaryotic sRNA search program ANNOgesic. This analysis has identified 143 sRNA candidates (90 previously unreported). We have classified their dependence on the B. pertussis two-component system required for virulence, namely, BvgAS, based on their expression in the presence/absence of the phosphorylated response regulator BvgA, confirmed several by Northern analyses, and demonstrated that 3 bind directly to B. pertussis Hfq, the RNA chaperone involved in mediating sRNA effects. Our study demonstrates the utility of combining RNA-seq, ANNOgesic, and molecular techniques to identify various BvgAS-dependent and Hfq-binding sRNAs, which may unveil the roles of sRNAs in pertussis pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Pequeno RNA não Traduzido/genética , Fatores de Transcrição/genética , Fatores de Virulência de Bordetella/genética , Bordetella bronchiseptica/genética , Bordetella parapertussis/genética , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/genética , Fator Proteico 1 do Hospedeiro/genética , Software , Transcriptoma/genética , Virulência/genética
4.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445770

RESUMO

The mucus layer protects airway epithelia from damage by noxious agents. Intriguingly, Bordetella pertussis bacteria provoke massive mucus production by nasopharyngeal epithelia during the initial coryza-like catarrhal stage of human pertussis and the pathogen transmits in mucus-containing aerosol droplets expelled by sneezing and post-nasal drip-triggered cough. We investigated the role of the cAMP-elevating adenylate cyclase (CyaA) and pertussis (PT) toxins in the upregulation of mucin production in B. pertussis-infected airway epithelia. Using human pseudostratified airway epithelial cell layers cultured at air-liquid interface (ALI), we show that purified CyaA and PT toxins (100 ng/mL) can trigger production of the major airway mucins Muc5AC and Muc5B. Upregulation of mucin secretion involved activation of the cAMP response element binding protein (CREB) and was blocked by the 666-15-Calbiochem inhibitor of CREB-mediated gene transcription. Intriguingly, a B. pertussis mutant strain secreting only active PT and producing the enzymatically inactive CyaA-AC- toxoid failed to trigger any important mucus production in infected epithelial cell layers in vitro or in vivo in the tracheal epithelia of intranasally infected mice. In contrast, the PT- toxoid-producing B. pertussis mutant secreting the active CyaA toxin elicited a comparable mucin production as infection of epithelial cell layers or tracheal epithelia of infected mice by the wild-type B. pertussis secreting both PT and CyaA toxins. Hence, the cAMP-elevating activity of B. pertussis-secreted CyaA was alone sufficient for activation of mucin production through a CREB-dependent mechanism in B. pertussis-infected airway epithelia in vivo.


Assuntos
Toxina Adenilato Ciclase/toxicidade , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema Respiratório/metabolismo , Sistema Respiratório/microbiologia , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mucina-5AC/metabolismo , Coqueluche/metabolismo , Coqueluche/microbiologia
5.
FEBS J ; 288(23): 6795-6814, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34216517

RESUMO

Several toxins acting on animal cells present different, but specific, interactions with cholesterol. Bordetella pertussis infects the human respiratory tract and causes whooping cough, a highly contagious and resurgent disease. Its virulence factor adenylate cyclase toxin (ACT) plays an important role in the course of infection. ACT is a pore-forming cytolysin belonging to the Repeats in ToXin (RTX) family of leukotoxins/hemolysins and is capable of permeabilizing several cell types and lipid vesicles. Previously, we observed that in the presence of cholesterol ACT induces greater liposome permeabilization. Similarly, recent reports also implicate cholesterol in the cytotoxicity of an increasing number of pore-forming RTX toxins. However, the mechanistic details by which this sterol promotes the lytic activity of ACT or of these other RTX toxins remain largely unexplored and poorly understood. Here, we have applied a combination of biophysical techniques to dissect the role of cholesterol in pore formation by ACT. Our results indicate that cholesterol enhances the lytic potency of ACT by promoting toxin oligomerization, a step which is indispensable for ACT to accomplish membrane permeabilization and cell lysis. Since our experimental design eliminates the possibility that this cholesterol effect derives from toxin accumulation due to lateral lipid phase segregation, we hypothesize that cholesterol facilitates lytic pore formation, by favoring a toxin conformation more prone to protein-protein interactions and oligomerization. Our data shed light on the complex relationship between lipid membranes and protein toxins acting on these membranes. Coupling cholesterol binding, increased oligomerization and increased lytic activity is likely pertinent for other RTX cytolysins.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Bicamadas Lipídicas/metabolismo , Toxina Adenilato Ciclase/química , Toxina Adenilato Ciclase/genética , Sequência de Aminoácidos , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , Membrana Celular/química , Permeabilidade da Membrana Celular , Humanos , Immunoblotting , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Perforina/química , Perforina/genética , Perforina/metabolismo , Porosidade , Ligação Proteica , Multimerização Proteica , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Virulência/genética , Coqueluche/microbiologia
6.
Pediatr Infect Dis J ; 40(9): e351-e353, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260500

RESUMO

We compared pathogen detection between saliva, nasopharyngeal and oropharyngeal swabs in children with respiratory symptoms. The sensitivity in nasopharyngeal swabs was 93% (95% confidence interval [CI]: 78%-98%), in oropharyngeal swabs 79% (95% CI: 60%-90%), in saliva overall 76% (95% CI: 58%-88%) and in 18 saliva samples collected with drooling or sponges, 94% (95% CI: 74%-99%). Saliva could be a relevant specimen alternative.


Assuntos
Técnicas de Laboratório Clínico/normas , Infecções Respiratórias/diagnóstico , Saliva/microbiologia , Saliva/virologia , Vírus/genética , Adolescente , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Criança , Pré-Escolar , Técnicas de Laboratório Clínico/métodos , Feminino , Humanos , Lactente , Masculino , Reação em Cadeia da Polimerase Multiplex , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/patogenicidade , Nasofaringe/microbiologia , Nasofaringe/virologia , Orofaringe/microbiologia , Orofaringe/virologia , Estudos Prospectivos , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Sensibilidade e Especificidade , Manejo de Espécimes , Vírus/classificação , Vírus/patogenicidade
7.
Emerg Microbes Infect ; 10(1): 1358-1368, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34132167

RESUMO

Respiratory infections caused by Bordetella pertussis are reemerging despite high pertussis vaccination coverage. Since the introduction of the acellular pertussis vaccine in the late twentieth century, circulating B. pertussis strains increasingly lack expression of the vaccine component pertactin (Prn). In some countries, up to 90% of the circulating B. pertussis strains are deficient in Prn. To better understand the resurgence of pertussis, we investigated the response of human monocyte-derived dendritic cells (moDCs) to naturally circulating Prn-expressing (Prn-Pos) and Prn-deficient (Prn-Neg) B. pertussis strains from 2016 in the Netherlands. Transcriptome analysis of moDC showed enriched IFNα response-associated gene expression after exposure to Prn-Pos B. pertussis strains, whereas the Prn-Neg strains induced enriched expression of interleukin- and TNF-signaling genes, as well as other genes involved in immune activation. Multiplex immune assays confirmed enhanced proinflammatory cytokine secretion by Prn-Neg stimulated moDC. Comparison of the proteomes from the Prn-Pos and Prn-Neg strains revealed, next to the difference in Prn, differential expression of a number of other proteins including several proteins involved in metabolic processes. Our findings indicate that Prn-deficient B. pertussis strains induce a distinct and stronger immune activation of moDCs than the Prn-Pos strains. These findings highlight the role of pathogen adaptation in the resurgence of pertussis as well as the effects that vaccine pressure can have on a bacterial population.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Bordetella pertussis/imunologia , Células Dendríticas/imunologia , Transcriptoma , Fatores de Virulência de Bordetella/genética , Adaptação Biológica , Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Inflamação , Vacina contra Coqueluche/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Fatores de Virulência de Bordetella/metabolismo , Coqueluche/microbiologia
8.
Infect Immun ; 89(12): e0030421, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34125597

RESUMO

Bordetella pertussis is a highly contagious bacterium that is the causative agent of whooping cough (pertussis). Currently, acellular pertussis vaccines (aP, DTaP, and Tdap) are used to prevent pertussis disease. However, it is clear that the aP vaccine efficacy quickly wanes, resulting in the reemergence of pertussis. Furthermore, recent work performed by the CDC suggest that current circulating strains are genetically distinct from strains of the past. The emergence of genetically diverging strains, combined with waning aP vaccine efficacy, calls for reevaluation of current animal models of pertussis. In this study, we used the rat model of pertussis to compare two genetically divergent strains Tohama 1 and D420. We intranasally challenged 7-week-old Sprague-Dawley rats with 108 viable Tohama 1 and D420 and measured the hallmark signs/symptoms of B. pertussis infection such as neutrophilia, pulmonary inflammation, and paroxysmal cough using whole-body plethysmography. Onset of cough occurred between 2 and 4 days after B. pertussis challenge, averaging five coughs per 15 min, with peak coughing occurring at day 8 postinfection, averaging upward of 13 coughs per 15 min. However, we observed an increase of coughs in rats infected with clinical isolate D420 through 12 days postchallenge. The rats exhibited increased bronchial restriction following B. pertussis infection. Histology of the lung and flow cytometry confirm both cellular infiltration and pulmonary inflammation. D420 infection induced higher production of anti-B. pertussis IgM antibodies compared to Tohama 1 infection. The coughing rat model provides a way of characterizing disease manifestation differences between B. pertussis strains.


Assuntos
Bordetella pertussis/fisiologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Coqueluche/etiologia , Animais , Biomarcadores , Bordetella pertussis/patogenicidade , Modelos Animais de Doenças , Ratos , Coqueluche/metabolismo , Coqueluche/patologia
9.
J Biol Chem ; 297(1): 100833, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34051233

RESUMO

The whooping cough agent Bordetella pertussis secretes an adenylate cyclase toxin (CyaA) that through its large carboxy-proximal Repeat-in-ToXin (RTX) domain binds the complement receptor 3 (CR3). The RTX domain consists of five blocks (I-V) of characteristic glycine and aspartate-rich nonapeptides that fold into five Ca2+-loaded parallel ß-rolls. Previous work indicated that the CR3-binding structure comprises the interface of ß-rolls II and III. To test if further portions of the RTX domain contribute to CR3 binding, we generated a construct with the RTX block II/III interface (CyaA residues 1132-1294) linked directly to the C-terminal block V fragment bearing the folding scaffold (CyaA residues 1562-1681). Despite deletion of 267 internal residues of the RTX domain, the Ca2+-driven folding of the hybrid block III/V ß-roll still supported formation of the CR3-binding structure at the interface of ß-rolls II and III. Moreover, upon stabilization by N- and C-terminal flanking segments, the block III/V hybrid-comprising constructs competed with CyaA for CR3 binding and induced formation of CyaA toxin-neutralizing antibodies in mice. Finally, a truncated CyaAΔ1295-1561 toxin bound and penetrated erythrocytes and CR3-expressing cells, showing that the deleted portions of RTX blocks III, IV, and V (residues 1295-1561) were dispensable for CR3 binding and for toxin translocation across the target cell membrane. This suggests that almost a half of the RTX domain of CyaA is not involved in target cell interaction and rather serves the purpose of toxin secretion.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/patogenicidade , Antígeno de Macrófago 1/química , Antígeno de Macrófago 1/metabolismo , Acilação , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/metabolismo , Células CHO , Cálcio/metabolismo , Cricetulus , Epitopos/metabolismo , Humanos , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Relação Estrutura-Atividade , Células THP-1
10.
BMC Infect Dis ; 21(1): 407, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941094

RESUMO

BACKGROUND: The prevalent resurgence of pertussis has recently become a critical public health problem worldwide. To understand pertussis pathogenesis and the host response to both the pathogen and vaccines, a suitable pertussis animal model, particularly a non-human primate model, is necessary. Recently, a non-human primate pertussis model was successfully established with baboons. Rhesus macaques have been shown to be ideal animal models for several infectious diseases, but a model of infectious pertussis has not been established in these organisms. Studies on rhesus macaque models of pertussis were performed in the 1920s-1930s, but limited experimental details are available. Recent monkey pertussis models have not been successful because the typical clinical symptoms and transmission have not been achieved. METHODS: In the present study, infant rhesus macaques were challenged with Bordetella pertussis (B.p) using an aerosol method to evaluate the feasibility of this system as an animal model of pertussis. RESULTS: Upon aerosol infection, monkeys infected with the recently clinically isolated B.p strain 2016-CY-41 developed the typical whooping cough, leukocytosis, bacteria-positive nasopharyngeal wash (NPW), and interanimal transmission of pertussis. Both systemic and mucosal humoral responses were induced by B.p. CONCLUSION: These results demonstrate that a model of pertussis was successfully established in infant rhesus macaques. This model provides a valuable platform for research on pertussis pathogenesis and evaluation of vaccine candidates.


Assuntos
Macaca mulatta , Coqueluche/etiologia , Coqueluche/transmissão , Aerossóis/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Bordetella pertussis/imunologia , Bordetella pertussis/patogenicidade , Citocinas/sangue , Modelos Animais de Doenças , Leucocitose/microbiologia , Masculino , Nasofaringe/microbiologia
11.
Sci Rep ; 11(1): 5429, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686161

RESUMO

Whooping cough is caused by Bordetella pertussis that releases pertussis toxin (PT) which comprises enzyme A-subunit PTS1 and binding/transport B-subunit. After receptor-mediated endocytosis, PT reaches the endoplasmic reticulum from where unfolded PTS1 is transported to the cytosol. PTS1 ADP-ribosylates G-protein α-subunits resulting in increased cAMP signaling. Here, a role of target cell chaperones Hsp90, Hsp70, cyclophilins and FK506-binding proteins for cytosolic PTS1-uptake is demonstrated. PTS1 specifically and directly interacts with chaperones in vitro and in cells. Specific pharmacological chaperone inhibition protects CHO-K1, human primary airway basal cells and a fully differentiated airway epithelium from PT-intoxication by reducing intracellular PTS1-amounts without affecting cell binding or enzyme activity. PT is internalized by human airway epithelium secretory but not ciliated cells and leads to increase of apical surface liquid. Cyclophilin-inhibitors reduced leukocytosis in infant mouse model of pertussis, indicating their promising potential for developing novel therapeutic strategies against whooping cough.


Assuntos
Bordetella pertussis/enzimologia , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/metabolismo , Leucocitose , Chaperonas Moleculares , Toxina Pertussis/toxicidade , Animais , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , Células CHO , Cricetulus , Células Epiteliais/microbiologia , Células HEK293 , Humanos , Leucocitose/induzido quimicamente , Leucocitose/tratamento farmacológico , Leucocitose/metabolismo , Camundongos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
12.
mBio ; 12(2)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758081

RESUMO

Complement, contact activation, coagulation, and fibrinolysis are serum protein cascades that need strict regulation to maintain human health. Serum glycoprotein, a C1 inhibitor (C1-INH), is a key regulator (inhibitor) of serine proteases of all the above-mentioned pathways. Recently, an autotransporter protein, virulence-associated gene 8 (Vag8), produced by the whooping cough pathogen, Bordetella pertussis, was shown to bind to C1-INH and interfere with its function. Here, we present the structure of the Vag8-C1-INH complex determined using cryo-electron microscopy at a 3.6-Å resolution. The structure shows a unique mechanism of C1-INH inhibition not employed by other pathogens, where Vag8 sequesters the reactive center loop of C1-INH, preventing its interaction with the target proteases.IMPORTANCE The structure of a 10-kDa protein complex is one of the smallest to be determined using cryo-electron microscopy at high resolution. The structure reveals that C1-INH is sequestered in an inactivated state by burial of the reactive center loop in Vag8. By so doing, the bacterium is able to simultaneously perturb the many pathways regulated by C1-INH. Virulence mechanisms such as the one described here assume more importance given the emerging evidence about dysregulation of contact activation, coagulation, and fibrinolysis leading to COVID-19 pneumonia.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella pertussis/patogenicidade , Proteína Inibidora do Complemento C1/metabolismo , Evasão da Resposta Imune , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Coagulação Sanguínea , Bordetella pertussis/química , Bordetella pertussis/metabolismo , Proteína Inibidora do Complemento C1/química , Proteínas do Sistema Complemento/metabolismo , Microscopia Crioeletrônica , Fibrinólise , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo , Virulência , Fatores de Virulência de Bordetella
13.
J Microbiol Immunol Infect ; 54(4): 693-700, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32245724

RESUMO

BACKGROUND: Pertussis is an important cause of hospitalization in children. Limited data on pertussis have been reported from China. The aim of this study was to characterize clinically suspected pertussis attributable to Bordetella pertussis among children and determine factors associated with longer duration of hospital stay in B. pertussis infection. METHODS: Two hundred and seventeen consecutive children with clinically suspected pertussis were prospectively enrolled in the study between Jan 2016 through Aug 2017. Variables assessed included demographics, clinical symptoms and laboratory findings. Cox proportional hazards regression model were used to predict variables associated with longer duration of hospital stay. RESULTS: Among the 217 patients with clinically suspected pertussis, B. pertussis was found in 106 (48.8%) patients. Of the 106 children with B. pertussis infection, 63 (59.4%) patients had coinfections with majority due to rhinovirus (HRV) (30.2%), Mycoplasma pneumoniae (29.2%) and human bocavirus (hBoV) (11.3%). Presence of coinfection [odds ratio (OR): 1.73, CI: 1.17-2.54], age ≤ 3 months (OR: 1.51, CI: 1.09 to 2.27), and WBC count ≥30 × 109/L (OR: 1.66, CI: 1.07 to 2.84) were independently associated with a longer hospital stay. CONCLUSIONS: B. pertussis infection had a high coinfection rate with the majority of coinfections due to HRV, M. pneumoniae and hBoV. Presence of coinfection, Age ≤3 months and WBC count ≥30 × 109/L were associated with a longer hospital stay. Children admitted with pertussis need close monitoring when they had evidence of coinfection, Age ≤3 months, WBC count ≥30 × 109/L.


Assuntos
Bordetella pertussis/genética , Coqueluche/epidemiologia , Bordetella pertussis/isolamento & purificação , Bordetella pertussis/patogenicidade , Criança , Pré-Escolar , China , Coinfecção/microbiologia , Coinfecção/virologia , Feminino , Humanos , Lactente , Tempo de Internação/estatística & dados numéricos , Masculino , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/isolamento & purificação , Prevalência , Modelos de Riscos Proporcionais , Estudos Prospectivos , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação , Coqueluche/diagnóstico
14.
Toxins (Basel) ; 12(9)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942577

RESUMO

Pathogenic Bordetella bacteria release a neurotropic dermonecrotic toxin (DNT) that is endocytosed into animal cells and permanently activates the Rho family GTPases by polyamination or deamidation of the glutamine residues in their switch II regions (e.g., Gln63 of RhoA). DNT was found to enable high level colonization of the nasal cavity of pigs by B. bronchiseptica and the capacity of DNT to inhibit differentiation of nasal turbinate bone osteoblasts causes atrophic rhinitis in infected pigs. However, it remains unknown whether DNT plays any role also in virulence of the human pathogen B. pertussis and in pathogenesis of the whooping cough disease. We report a procedure for purification of large amounts of LPS-free recombinant DNT that exhibits a high biological activity on cells expressing the DNT receptors Cav3.1 and Cav3.2. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the DNT molecule adopts a V-shaped structure with well-resolved protein domains. These results open the way to structure-function studies on DNT and its interactions with airway epithelial layers.


Assuntos
Bordetella pertussis/enzimologia , Células Epiteliais/metabolismo , Transglutaminases/metabolismo , Fatores de Virulência de Bordetella/metabolismo , Células 3T3 , Células A549 , Animais , Animais Recém-Nascidos , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Necrose , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Relação Estrutura-Atividade , Transglutaminases/genética , Transglutaminases/toxicidade , Transglutaminases/ultraestrutura , Fatores de Virulência de Bordetella/genética , Fatores de Virulência de Bordetella/toxicidade
15.
PLoS One ; 15(9): e0238932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915869

RESUMO

Pertussis, a severe respiratory infection caused by Bordetella pertussis, is distributed globally. Vaccination has been crucial to annual reductions in the number of cases. However, disease reemergence has occurred over the last decade in several countries, including Brazil. Here we describe the clinical and epidemiological aspects of suspected pertussis cases in Salvador, Brazil, and evaluate factors associated with case confirmation. This descriptive and retrospective study was conducted in the five hospitals in Salvador that reported the highest number of pertussis cases between 2011-2016. Demographic and clinical data were recorded for each patient. Bivariate analysis was performed to evaluate differences between groups (confirmed vs. unconfirmed cases) using Pearson's Chi-square test or Fisher's exact test. Results: Of 529 suspected pertussis cases, 29.7% (157/529) were confirmed by clinical, clinical-epidemiological or laboratory criteria, with clinical criteria most frequently applied (63.7%; 100/157). Unvaccinated individuals (43.3%; 68/157) were the most affected, followed by age groups 2-3 months (37.6%; 59/157) and <2 months (31.2%; 49/157). Overall, ≤50% of the confirmed cases presented a complete vaccination schedule. All investigated cases presented cough in association with one or more symptoms, especially paroxysmal cough (66.9%; 105/529) (p = 0.001) or cyanosis (66.2%; 104/529) (p<0.001). Our results indicate that pertussis occurred mainly in infants and unvaccinated individuals in Salvador, Brazil. The predominance of clinical criteria used to confirm suspected cases highlights the need for improvement in the laboratory tools used to perform rapid diagnosis. Fluctuations in infection prevalence demonstrate the importance of vaccination strategies in improving the control and prevention of pertussis.


Assuntos
Bordetella pertussis/patogenicidade , Infecções Respiratórias/prevenção & controle , Coqueluche/epidemiologia , Bordetella pertussis/isolamento & purificação , Brasil/epidemiologia , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Vacina contra Coqueluche/administração & dosagem , Infecções Respiratórias/microbiologia , Estudos Retrospectivos , Fatores de Tempo , Vacinação/métodos , Coqueluche/microbiologia , Coqueluche/prevenção & controle
16.
Sci Rep ; 10(1): 15002, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929160

RESUMO

Pertussis is a highly contagious disease for which prompt, point-of-care diagnosis remains an unmet clinical need. Results from conventional test modalities (nucleic acid detection, serology, and culture) take hours to days. To overcome this challenge, we identified a new biomarker (tracheal colonization factor A, TcfA) for detection of Bordetella pertussis infection by lateral flow immunoassay (LFIA). We developed a library of 28 epitope-mapped monoclonal antibodies against TcfA and incorporated three antibodies into a LFIA. The LFIA did not cross-react with common bacterial or fungal organisms, but did react with nine distinct B. pertussis strains. The minimal linear epitope sequences targeted by the LFIA were conserved in 98% of 954 B. pertussis isolates collected across 12 countries from 1949-2017. The LFIA's limit of detection was 3.0 × 105 CFU/mL with B. pertussis cells in buffer, 6.2 × 105 CFU/mL with nasopharyngeal washes from a non-human primate model, and 2.3 ng/mL with recombinant TcfA. The LFIA reacted with patient nasopharyngeal swab specimens containing as few as 1.8 × 106 B. pertussis genomes/mL and showed no false-positives. Rapid (< 20 min) LFIA detection of TcfA as a biomarker for B. pertussis infection is feasible and may facilitate early detection of pertussis.


Assuntos
Proteínas de Bactérias/imunologia , Biomarcadores/análise , Bordetella pertussis , Imunoensaio/métodos , Fatores de Virulência de Bordetella/imunologia , Coqueluche/microbiologia , Animais , Anticorpos Monoclonais/imunologia , Bordetella pertussis/genética , Bordetella pertussis/imunologia , Bordetella pertussis/patogenicidade , Soluções Tampão , Mapeamento de Epitopos , Humanos , Limite de Detecção , Camundongos , Nasofaringe/microbiologia , Papio , Coelhos , Sensibilidade e Especificidade , Coqueluche/diagnóstico
17.
Commun Biol ; 3(1): 427, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759959

RESUMO

The mutant gdPT R9K/E129G is a genetically detoxified variant of the pertussis toxin (PTx) and represents an attractive candidate for the development of improved pertussis vaccines. The impact of the mutations on the overall protein structure and its immunogenicity has remained elusive. Here we present the crystal structure of gdPT and show that it is nearly identical to that of PTx. Hydrogen-deuterium exchange mass spectrometry revealed dynamic changes in the catalytic domain that directly impacted NAD+ binding which was confirmed by biolayer interferometry. Distal changes in dynamics were also detected in S2-S5 subunit interactions resulting in tighter packing of B-oligomer corresponding to increased thermal stability. Finally, antigen stimulation of human whole blood, analyzed by a previously unreported mass cytometry assay, indicated broader immunogenicity of gdPT compared to pertussis toxoid. These findings establish a direct link between the conserved structure of gdPT and its ability to generate a robust immune response.


Assuntos
Toxina Pertussis/química , Vacina contra Coqueluche/genética , Conformação Proteica , Toxoides/genética , Animais , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Medição da Troca de Deutério , Humanos , Toxina Pertussis/genética , Vacina contra Coqueluche/química , Coqueluche/microbiologia , Coqueluche/prevenção & controle
18.
J Bacteriol ; 202(21)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817088

RESUMO

Bordetella pertussis uses a type III secretion system (T3SS) to inject virulence proteins into host cells. Although the B. pertussis T3SS was presumed to be involved in host colonization, efficient secretion of type III secreted proteins from B. pertussis has not been observed. To investigate the roles of type III secreted proteins during infection, we attempted to optimize culture conditions for the production and secretion of a type III secreted protein, BteA, in B. pertussis We observed that B. pertussis efficiently secretes BteA in ascorbic acid-depleted (AsA-) medium. When L2 cells, a rat lung epithelial cell line, were infected with B. pertussis cultured in the AsA- medium, BteA-dependent cytotoxicity was observed. We also performed an immunofluorescence assay of L2 cells infected with B. pertussis Clear fluorescence signals of Bsp22, a needle structure of T3SS, were detected on the bacterial surface of B. pertussis cultured in the AsA- medium. Since ascorbic acid is known as a reducing agent, we cultured B. pertussis in liquid medium containing other reducing agents such as 2-mercaptoethanol and dithioerythritol. Under these reducing conditions, the production of type III secreted proteins was repressed. These results suggest that in B. pertussis, the production and secretion of type III secreted proteins are downregulated under reducing conditions.IMPORTANCE The type III secretion system (T3SS) of Bordetella pertussis forms a needlelike structure that protrudes from the bacterial cell surface. B. pertussis uses a T3SS to translocate virulence proteins called effectors into host cells. The culture conditions for effector production in B. pertussis have not been investigated. We attempted to optimize culture medium compositions for producing and secreting type III secreted proteins. We found that B. pertussis secretes type III secreted proteins in reducing agent-deprived liquid medium and that BteA-secreting B. pertussis provokes cytotoxicity against cultured mammalian cells. These results suggest that redox signaling is involved in the regulation of B. pertussis T3SS.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella pertussis/patogenicidade , Regulação Bacteriana da Expressão Gênica , Sistemas de Secreção Tipo III/metabolismo , Coqueluche/microbiologia , Animais , Linhagem Celular , Meios de Cultura , Regulação para Baixo , Oxirredução , Ratos , Virulência
19.
BMC Med ; 18(1): 233, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32854714

RESUMO

BACKGROUND: An effective vaccine against Bordetella pertussis was introduced into the Expanded Programme on Immunisation (EPI) by WHO in 1974, leading to a substantial global reduction in pertussis morbidity and mortality. In low- and middle-income countries (LMICs), however, the epidemiology of pertussis remains largely unknown. This impacts negatively on pertussis control strategies in these countries. This study aimed to systematically and comprehensively review published literature on the burden of laboratory-confirmed pertussis in LMICs over the 45 years of EPI. METHODS: Electronic databases were searched for relevant literature (1974 to December 2018) using common and MeSH terms for pertussis. Studies using PCR, culture or paired serology to confirm Bordetella pertussis and parapertussis in symptomatic individuals were included if they had clearly defined numerators and denominators to determine prevalence and mortality rates. RESULTS: Eighty-two studies (49,167 participants) made the inclusion criteria. All six WHO regions were represented with most of the studies published after 2010 and involving mainly upper middle-income countries (n = 63; 77%). PCR was the main diagnostic test after the year 2000. The overall median point prevalence of PCR-confirmed Bordetella pertussis was 11% (interquartile range (IQR), 5-27%), while culture-confirmed was 3% (IQR 1-9%) and paired serology a median of 17% (IQR 3-23%) over the period. On average, culture underestimated prevalence by 85% (RR = 0.15, 95% CI, 0.10-0.22) compared to PCR in the same studies. Risk of pertussis increased with HIV exposure [RR, 1.4 (95% CI, 1.0-2.0)] and infection [RR, 2.4 (95% CI, 1.1-5.1)]. HIV infection and exposure were also related to higher pertussis incidences, higher rates of hospitalisation and pertussis-related deaths. Pertussis mortality and case fatality rates were 0.8% (95% CI, 0.4-1.4%) and 6.5% (95% CI, 4.0-9.5%), respectively. Most deaths occurred in infants less than 6 months of age. CONCLUSIONS: Despite the widespread use of pertussis vaccines, the prevalence of pertussis remains high in LMIC over the last three decades. There is a need to increase access to PCR-based diagnostic confirmation in order to improve surveillance. Disease control measures in LMICs must take into account the persistent significant infant mortality and increased disease burden associated with HIV infection and exposure.


Assuntos
Bordetella pertussis/patogenicidade , Programas de Imunização/métodos , Coqueluche/epidemiologia , Países em Desenvolvimento , Feminino , História do Século XX , Humanos , Masculino
20.
PLoS One ; 15(5): e0228606, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32392246

RESUMO

Bordetella pertussis, the causative agent of whopping cough, produces an adenylate cyclase toxin (CyaA) that plays a key role in the host colonization by targeting innate immune cells which express CD11b/CD18, the cellular receptor of CyaA. CyaA is also able to invade non-phagocytic cells, via a unique entry pathway consisting in a direct translocation of its catalytic domain across the cytoplasmic membrane of the cells. Within the cells, CyaA is activated by calmodulin to produce high levels of cyclic adenosine monophosphate (cAMP) and alter cellular physiology. In this study, we explored the effects of CyaA toxin on the cellular and molecular structure remodeling of A549 alveolar epithelial cells. Using classical imaging techniques, biochemical and functional tests, as well as advanced cell mechanics method, we quantify the structural and functional consequences of the massive increase of intracellular cyclic AMP induced by the toxin: cell shape rounding associated to adhesion weakening process, actin structure remodeling for the cortical and dense components, increase in cytoskeleton stiffness, and inhibition of migration and repair. We also show that, at low concentrations (0.5 nM), CyaA could significantly impair the migration and wound healing capacities of the intoxicated alveolar epithelial cells. As such concentrations might be reached locally during B. pertussis infection, our results suggest that the CyaA, beyond its major role in disabling innate immune cells, might also contribute to the local alteration of the epithelial barrier of the respiratory tract, a hallmark of pertussis.


Assuntos
Toxina Adenilato Ciclase/genética , Bordetella pertussis/enzimologia , Imunidade Inata/genética , Coqueluche/genética , Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/patogenicidade , Calmodulina/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/genética , Células Epiteliais/microbiologia , Humanos , Sistema Respiratório/metabolismo , Sistema Respiratório/microbiologia , Sistema Respiratório/patologia , Coqueluche/microbiologia , Coqueluche/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...